Wetting of a colloidal particle

<u>**R**. Evans</u>^{1,2} and **R**. Roth²

¹H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK ²Max-Plank-Institut für Metallforschung, 70569 Stuttgart, Germany ^{1,2}Bob.Evans@bristol.ac.uk ²roth@fluids.mpi-stuttgart.mpg.de

We consider the solvation of big hard-sphere colloids in two types of solvent. In the first case, where the hard-sphere is immersed in a simple fluid exhibiting liquid-gas coexistence, complete wetting by gas (drying) occurs and, in this limit, the colloid-fluid surface tension is non-analytic in R^{-1} , the curvature of the colloidal particle. Moreover the density profile of the solvent near the colloid acquires a contribution proportional to the gas-liquid surface tension $\times R^{-1}$ plus contributions non-analytic in R^{-1} . In the second case, the hard-sphere colloid is immersed in a mixture of (smaller) colloids and polymer that undergoes fluid-fluid phase separation. We treat the mixture in terms of the Asakura-Oosawa-Vrij model and employ a density functional theory to investigate adsorption at the big colloid. As a result of depletion forces, the smaller colloidal particles are preferentially adsorbed and, in the limit $R^{-1} \rightarrow 0$, complete wetting by the colloid rich phase can occur . We show that the presence of layering and wetting transitions can have a profound effect on the curvature dependence of interfacial properties and, hence, on the solvation (excess chemical potential) of big colloidal particles.